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Metaphorical Mind Fields

Freud often compared the brain to hydraulic and electro-magnetic
systems. Leibniz compared it to a mill, and I am told some of the
ancient Greeks thought the brain functions like a catapult. At present,
obviously, the metaphor is the digital computer.

—John Searle

The brain is said to use data, make hypotheses, make choices, and
50 on, as the mind was once said to have done. In a behavioristic ac-
count, it is a person who does these things.

—B. E Skinner

o far, we've considered how our perceptual biases influence our ten-

dency to anthropomorphize the world around us, and how, as big-
brained mammals, we often fail to realize that much of the flexible (“in-
telligent”) behavior that we see doesn’t require very much in the way of
a brain at all. We've also begun to explore some of the scientific biases
that exist in psychology, and to see that alternative views are possible. In
this chapter, we’ll extend this argument and consider in more detail how
one particalar human bias, the one on which our scientific biases rest,
may prevent us from appreciating what natural cognition is all about.
Specifically, we’ll consider the ways in which our scientific understanding
of the world is structured by the use of metaphors, and how this has led
to the dominant view of cognition as a brain-based process isolated from
the world.'

What does it mean to say that we structure and understand our world
through metaphor? In our everyday life, it refers to our tendency to un-
derstand certain abstract concepts in terms of other, more concrete,
experiences. We understand the abstract notion of time, for example,
by using spatial metaphors: we “look forward” to spring break, not least
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because we've “fallen behind” with our work and deadlines are loom-
ing, although we don’t worry too much about this, as the “past is behind
us.” Similarly, we often think of our thoughts and ideas as food: we like
something we can “get our teeth into,” although we often find that we
may have “bitten off more than we can chew” As you may have noticed,
we often use metaphors based on the bodily actions we can take in the
world (moving through time; chewing on ideas), and, as we’ll consider
in more detail in the next chapter, this may well occur because most of
our understanding of the world is grounded in—and built up from~—our
ability to act in it, so that even the most abstract of ideas (not excluding
mathematical thought, according to some authors)? reflect what our bod-
ies can physically achieve.

Using metaphors in this way doesn’t mean that we literally believe that
our thoughts are food, and that we will starve if we don’t get any. Rather,
we understand that a similar relationship exists between the equivalent
elements in both the concrete and abstract domains and this is why we
can draw the comparison: our thoughts can be “intellectually nourishing,”
if not literally so. In the same way, we draw analogies between items (i.e.,
interpret one thing in terms of another) by understanding the similar-
ity of the relationship that exists between them: a bird’s nest is like a
human apartment (the relation of “home™, a dog wagging its tail is like
a human’s smile (the relation of “friendly behavior”). The ability to see
beyond (another metaphor . . .) the juxtaposition of different elements
to the relationship that exists between them (i.e., moving beyond ob-
servable features), so that it is possible to identify a similar relationship
between an entirely different pair of items, is argued to be a key human
trait—perhaps even unique*—and one that allows us to contemplate and
understand the world in a more complex and abstract way than is avail-
able to many other creatures, Why, then, might this kind of reasoning lead
us astray? Surely it is an extremely useful skill?

The answer is that it is, obviously a very useful ability, and, most per-
tinently, one that, as noted at the beginming of the chapter, plays a large
role in scientific thinking. In science, we often have to deal with highly
abstract concepts that would otherwise be very hard to grasp, precisely
because they are so far outside our everyday experience. Metaphors are,
therefore, an essential part of science.® One suggestion is that metaphors
help us extend the boundaries of our knowledge (itsell a metaphor . . .)
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via a process of “catachresis”—which means to deliberately use a word
or term to denote something for which, without the catachresis, there
simply is no name. When we do this, we can bring into being entirely
new ways of thinking, and pursue ideas that would never have occurred
to us otherwise.®

So, this way, the structure of the atom was famously likened to the solar
system, and DNA is often seen as a form of digital storage device. As we’ve
already discussed in chapter 1, the action of natural selection is often com-
pared to the intentions (the desires and beliefs) of humans. As the latter
case also illustrated, however, this kind of reasoning can create problems
when the metaphors employed are taken too literally. The same goes for
the conventional view of perception discussed in the previous chapter: the
suggestion that our brains “make inferences,” “test hypotheses,” and “pres-
ent arguments” is, at base, metaphorical, As we noted, brains cannot liter-
ally do any of these things, but the misconstrual of this metaphor (or the
simple failure to remain aware that a metaphor is being used) can lead one
astray. No doubt all the neuroscientists referred to in the previous chapter
would emphatically deny that they are arguing for a homunculus in the
head, but by speaking of the brain as “inferring,” “perceiving,” and “asking
questions,” that is exactly what they are doing.

In what follows, we’re going to consider a very powerful metaphor
that helped shape the fields of psychology, cognitive science, and arti-
ficial intelligence for many years, and which may explain why we often
get trapped into anthropocentric ways of thinking about the cognition of
nonhuman animals. Specifically, we’re going to consider the way in which
many neuro-, cognitive, and comparative psychologists liken the brain
to a computer (the “inferences” and “hypotheses” view of perception dis-
cussed in the previous chapter is obviously one aspect of this view). In-
deed, some people go so far as to argue that the (human) brain is not
just analogous to a computer in a strictly metaphorical sense, but that it
actually is a computer that takes in input, processes it in various ways, and
then produces a specific output.”

As with our anthropocentric tendencies, our use of the computer met-
aphor is so familiar and comfortable that we sometimes forget that we
are dealing only with a metaphor, and that there may be other, equally in-
teresting (and perhaps more appropriate) ways to think about brains and
nervous systems and what they do. After all, given that our metaphors
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for the brain and mind have changed considerably over time, there’s no
reason to expect that, somehow, we’ve finally hit on the correct one, as
opposed to the one that just reflects something about the times in which
we live. Socrates considered the mind to be a wax tablet; John Locke, the
seventeenth-century British philosopher, famously considered the mind
to be “a blank slate,” on which our “sense data” were written or painted;
and, as the epigraph opening this chapter suggests, Freud compared the
brain to a hydraulic system (with all its connotations of pressure build-
ups and the need for “release™). The mind/brain has also been compared
to an abbey, cathedral, aviary, theater, and warehouse, as well as a filing
cabinet, clockwork mechanism, camera obscura, and phonograph, and
also a railway network and telephone exchange. The use of a computer
metaphor is simply the most recent in a long line of tropes that pick up
on the most advanced and complex technology of the day.® This, in itself,
should make us somewhat skeptical about claims for the computerlike
nature of the brain; what should really malke us wary, however, is how the
computer metaphor took hold in the first place. To grasp this, we need to
consider a little history.

Artiﬁcially Anthropocentric Intelligence

Artificial intelligence is no match for natural stupidity.

—Anomymous

Chess is the Drosophila of artificial intelligence. However,
computer chess developed much as genetics might have
if the geneticists had concentrated their efforts starting in
1910 on breeding racing Drosophila. We would have some
science, but mainly we would have very fast fruit flies.
—John McCarthy

The computer metaphor first rose to prominence in the early 1950s.
Prior to this, the telephone exchange served as our best metaphor for
the brain. Brains were considered to be electronic switching devices that
connected a stimulus to a response in the same way that a telephane op-
erator connected one caller to another.’ As the most prominent school
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of thought in psychology at the time was radical behaviorism, this anal-
ogy worked extremely well: for the most part (there were some excep-
tions),'” behaviorists dealt not with internal, mental processes, but with
brain-body behavior considered as a whole;'' more specifically, their con-
cerns were with behavior that could be controlled as a response to a stimu-
lus, via learning, As it became clear that this stimulus-response account
of the behaviorist approach couldn’t provide an adequate account for all
that an animal was (or wasn’t) capable of learning, the idea began to gain
ground that some internal processing had to mediate between a stimulus
and a response.’? At the same tine that psychologists were rejecting and
rethinking behaviorism, computer scientists were developing what came
ta be known as “artificial intelligence,” and using computers to simulate
cognitive processes. Psychologists began to cotton on to the idea that
understanding brains and intelligence could be achieved not only via the
analogy of the computer, but also by the actual use of computers to model
and mimic the activities of the brain.

When Is a Tﬁring Machine Not a Turing Machine?

The British mathematician Alan Turing, often regarded as the father
of computer science, is widely credited with developing the “brain as
computer” metaphor owing to his analyses of “Turing machines”;"* these
were very basic devices—consisting of a read-write “head” (like that on
a tape recorder) that could print, read, and erase symbols on an infinite
tape of paper—that manipulated symbols in a very precise way. It is im-
portant to be aware that Turing machines do not actually exist; they are
entirely abstract descriptions of a computing device that could be used
to solve logical problems, via an “algorithm” (a set of rules followed in
sequence),'*

One can “build” an infinite variety of Turing machines, each of which
is capable of computing a single specific sequence of numbers depend-
ing on how its read-write head interacts with the symbols on the tape
(i.e., based on its specific algorithm}. Building on this idea, Turing pro-
posed that it was possible to develop a “universal” Turing machine—one
that would be able to simulate the operation of any other possible Tur-
ing machine—so that, instead of being able to compute only a single
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Figure 7.1. A Turing machine is an abstract device thought up by the British
mathematician Alan Turing to demonstrate how numbers can be computed
through the use of an algorithm (a set of rules followed in sequence).

sequence of numbers, a universal machine would be able to calculate
any possible sequence of numbers, provided there was a specific Turing
machine whose operations it could reproduce. Strange as it may seem, it
was proved that this purely mechanical procedure—the “algorithm” used
by Turing machines—could be employed to calculate the answer to any
question that any other kind of computer could calculate (that is, not just
mathematical questions, but any kind of question at all, provided it could
be encoded by the symbols used by the Turing machine). This led to much
excitement and speculation that perhaps human thought was a similar
kind of algorithmic, symbol-manipulating process, and, even more excit-
ingly, perhaps the brain was a real-world universal Turing machine. " This
opened up the possibility for modeling human thought, language, percep-
tion, categorization—whatever process one liked—using a digital com-
puter. Why? Because, like a universal Turing machine, and supposedly like
the human brain, computers use algorithms to perform calculations (or
computations).

Asa result——and as computers became a reality, and not just theoreti-
cal proposals—it seemed possible that humans would be able to create
a brain capable of humanlike thought using human-made silicon chips,
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instead of biologically evolved neurons.'® This follows logically because
the computational processes of a Turing machine do not depend on the
actual materials that are used to make it: a Turing machine can be made
out of anything you like, not just paper tape and magnetic heads, but
anything at all, from “two kinds of pebbles and a roll of toilet paper,” as
Jerry Fodor once put it,"” to “cats, mice and cheese,” as the philosopher
Ned Block once suggested.'® Moreover, because the brain alone was
seen as the key to understanding cognition—based on the idea discussed
in the previous chapter that, in order for us to perceive and think about
the world, representations of that world must be constructed to com-
pensate for the poor quality of the information received by the sense re-
ceptors—it meant that bodies and the environment became completely
irrelevant to the study of cognition. This further reinforced the idea that
it was possible to create humanlike intelligence in a computer; a com-
puter can be considered equivalent to a brain, but not to an active, mov-
ing body.

From this point on, psychological processes——in both human and non-
human animals-—became closely identified with various kinds of “infor-
mation processing.” The idea was that sensory input came into the cogni-
tive system; the cognitive system algorithmically manipulated symbols, ™
as would a Turing machine/digital computer, and then produced an out-
put that manipulated the body. It is at this point that the clear separa-
tion of perception, cognition, and action, which we have noted in earlier
chapters, began to be made, and efforts to understand the worlings of
the mind (and “thought” and “intelligence”) came to mean efforts to iden-
tify and understand the “information processing” that occurred between
sensory input and motor output. With the computational metaphor in
place, it became almost inevitable that the brain would be seen as the
equivalent of computer hardware, with cognitive processes operating like
the brain’s software: an idea that has permeated modern Western culture
at all levels. In the film The Matrix, for example, it was possible to down-
load computer programs directly into people’s brains via a portal at the
back of the head, obviating a long-drawn-out learning process and pro-
viding the recipient with expert abilities in, among other things, kung fu
(again emphasizing that the body is largely irrelevant to the development
of even such highly physical skills; a dangerous assumption, as we shall see
in chapters 9 and 10).
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Aside from the problems of neglecting bodies and environment, an-
other problem of the development and use of the “brain as computer”
metaphor is——as Andrew Wells points out in his marvelous book on the
subject—that it completely misrepresents a Turing machine and also Tar-
ing’s aim in developing them.” To get the full story, and so understand
what Turing was attempting, you should really stop here and read Wells’s
book for yourself, but assuming you don’t do that (even though you
should), a brief summary will serve our purposes.

When Turing’s paper was published, way back in 1936, a “computer”
was not a machine, but a person. A person who computed sums, Turing’s
alm was to try to find a way of mechanizing this process, thereby produc-
ing a labor-saving device that could do the work of human computers. As
we noted above, Turing conceived of his machine as an infinite paper tape,
divided into squares on which symbols could be read and printed. This
tape passed through a head that could move either to left or to right, one
square at a time, and this head could both read what was written on the
tape and print on it. In most books and articles in which a'Turin g machine
is discussed, this whole kit and kaboodle is used as an analogy for the
mind or for cognitive processes: inside our heads, it is argued, we have a
Turing machine that receives input in symbolic form, manipulates it, and
then provides an output. The tape of a'Turing machine is, in essence, a
model for human memory.*

Now, the truth of the matter is that this couldn’t be further from what
Turing was actually attempting to model. Remember that he was trying
to conceive of a machine that could calculate sums in the same way that a
human computer calculated them. How do we calculate sums? If they're
long and complicated, most of us do it on a piece of paper—maybe even
graph paper—using a pen or pencil. In this light, let’s consider the ab-
stract Turing machine again. The paper tape that is usually seen as internal
memory was, for Turing, part of the environment. Specifically, it repre-
sented the paper on which a human computer could work out his or her
sum. So the paper tape is not a model of memory in the head but a model
of graph paper in the environment.” Equally, the “machine-head” that
reads and writes the symbols does not represent the cognitive processes
taking place inside a person’s brain, but instead represents the person as
a whole, using pen and paper to calculate sums. Wells refers to this setup
as a “mini-mind” to get across the idea that these can be either complete
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descriptions of very simple minds or, alternatively, partial descriptions of
more complicated minds (after all, there is more to a person than simply
computing sums). So a Turing machine actually consists of a mini-mind
that has a finite number of states (because human memory has finite lim-
its), and an infinite tape divided into squares (because, when real people
do real calculations, their ability to do so is not usually limited by their
having access to only a fixed amount of paper). The combination of the
state of the mini-mind and the contents of the tape is called a “configu-
ration.” The current configuration determines the moves the machine
makes, what it prints, and what the succeeding conhguration will be,

It couldn’t be clearer from this description, then, that the symbols a
Turing machine manipulates are outside the mind, and not part of it.** A
Turing machine is, as a result, a very ecological contraption, in Gibson’s
sense of the word. Computing is about the relationship between a human
computer and his or her environment (which consists of the paper and
pencil used to do the sums). One cannot understand the behavior of a
Turing machine simply by looking at the state of the mini-mind (the per-
son, if you like), nor can one understand what the computer will do just
by looking at the tape (the environment). To understand a Turing ma-
chine’s behavior, one has to look at the relation between the agent and the
environment. Wells uses this insight to argue that a mind is both formed
and maintained by the continuous interactions between an agent and the
environment.” Turing modeled exactly these kinds of interactions, but
only in a very specific context. It was never his intention to provide a
general analysis of human behavior, nor to suggest that all human cogni-
tion conformed to this specific kind of computational process. Indeed,
Turing’s concerns were clearly mathematical, rather than psychological.
He was simply interested in what numbers it was possible to compute, as
a human did, using a pencil and paper.*

So, if Turing’s machines were never intended to be a model of the
mind or of mental processes, where did our current idea of the brain as
a computer come from? For the answer, we have to cross the Atlantic,
The first real-world version of a Turing machine was constructed for the
United States army and known as the ENIAC (Electronic Numerical In-
tegrator and Computer). Owing to the way it was built, and the fact that
it was a special-purpose Turing machine (rather than a “universal” one),
the computer’s entire physical hardware had to be changed and rewired
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every time a new kind of calculation was needed. In the late 1940s, John
von Neumann was one of several people charged with the task of making
the ENIAC more convenient and useful, and it was he who designed the
architecture used by all modern computers today: a central processing
unit, a main memory, a set of peripherals (like keyboard and monitor),
and a second memory that could be used to store information externally,
like hard drives, CDs, and memory sticks. It is, therefore, to von Neu-
mann that we owe the “brain as computer” metaphor, as it was he who
helped create self contained digital computers. In addition, it was he who
specifically compared his computer architecture to that of the brain, sug-
gesting that the central control (CPU) of his computer corresponded to
the “associative” neurons of the human nervous system, and that the input
and output devices were the equivalents of sensory and motor neurons,
respectively. *® This “von Neumann architecture” is one that has been used
in many different kinds of artificial intelligence projects and programs,
and it is this, rather than a universal Turing machine, on which our meta-
phors of mind are based. Qur notion that Turing machines represent the
basis for our current view of cognition is completely off-track.

[ mention all this here, of course, to hightight the possibility that, had
people recognized the true psycholo gical implications of Turing machines
(that they reflect the ongoing mutual relationship between a “computer”
and her environment, and are not a model of the mind divorced from the
environment), we might have had a very different view of cognition and
the brain, and a different kind of psychology might have been the result,
Indeed, this is Wells’s point: he explicitly shows how one can marry Gib-
son’s ecological theory with Turing’s theory of computation to provide
a formal model of affordances (one that works better than the available
alternatives),” and one that can serve as an alternative model of cogni-
tion. Space doesn’t permit a detailed examination of Wells’s argument
here, but, in essence, affordances can be characterized and studied as the
“configurations” of a Turing machine (the state of the “mini-mind” and the
contents of the tape), an idea that captures the complementarity between
animal and environment that is essential to Gibson’s theory.” Just as af-
fordances “point” both ways—toward the animal and the environment—
so do the configurations of a'Turing machine. The Turing machine model
also gets at the issue of internal structure in the organism versus external
structure in the environment, which has been the source of much of the
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criticism of Gibson's model. AsWells notes, there is a theoretical trade-off
between internal and external structure in a Turing machine: a machine
with only two possible internal states can compute numbers provided
it has access to an external alphabet that is large enough. Equally, a Tur-
ing machine that has access to only a two-symbol alphabet can compute
numbers provided it has a large number of possible internal states, The
Turing machine model suggests, therefore, that structure in the animal
will complement structure in the environment.”” This means that one
cannot simply assume a particular behavior results only from structure in
the animal versus that of the environment or vice versa: it should reflect a
trade-off between these two, and to discover what that is, you have to go
and find out (the point we made in the previous chapter).

Finally, the idea of a universal Turing machine, once properly under-
stood, also tends to support a Gibsonian view of the world. Unlike those
Turing machines that compute only a specific sequence of numbers, and
which always start on a blank tape, the universal machine works by begin-
ning on a tape that already contains a string of symbols, which allows it to
produce the output of the machine it is simulating, As the tape is actually
part of the environment, a universal machine supports the notion that
the information available for perception is found mainly in the environ-
ment, and not in the head.” Wells’s combining of Turing’s theory with
Gibson’s theory is, in a way, wonderfully subversive, because it brings
together the most cognitive of all models in psychology—the Turing ma-
chine as isolated brain—and marries it to a theory that requires complete
complementarity between organism and environment. Of course, in an-
other way, it is not subversive at all, because it is merely correcting the
misconception that the notion of a Turing machine supports the “brain as
computer” metaphor that currently holds such sway.

Alternative Metapbors for the Brain?

Looking at Turing machines from an ecological perspective, and high-
lighting the differences between Turing machines and von Neuman ar-
chitecture is a point well worth making because, although the computer
analogy built on von Neumann architecture has been useful in a number
of ways, and there is also no doubt that work in classic artificial intel-
ligence (or, as it’s often known, Good Old Fashioned Al: GOFAI)* has
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had its successes, these have been somewhat limited, at least from our
perspective here as students of cognitive evolution.

As a number of cognitive scientists and roboticists have pointed out
over the years,” the classical Al perspective, with its emphasis on the
algorithmic manipulation of symbols using a von Neumann architecture,
naturally gravitated toward those aspects of cognition, like natural lan-
guage, formal reasoning, planning, mathematics, and playing chess, in
which the processing of abstract symbols in a logical fashion was most
apparent. As a result, classic artificial intelligence also placed humans
tront and center, with the focus of research resting squarely on under-
standing some peculiarly human aspects of intelligence: none of them
are very athletic—they don’t require an active organism in the Gibson-
lan-sensorimotor sense—and none of them require any specific interac-
tion with the environment, as opposed to seeing the environment simply
as the arena in which the products of these computations are played out.
Unfortunately, this rather arbitrary initial emphasis on these particu-
lar (and specialized) kinds of logical, algorithmically based tasks gained
such momentum that researchers came to the conclusion that every-
thing brains did (human and nonhuman alike) was simply a form of logi-
cal reasoning, and that they employed an algorithmic process to achieve
this. I say “unfortunately” because, while this view (eventually) managed
to generate a computer that could beat the world chess champion, it
has, so far, failed to give us any real insight into the mechanisms that
underlie the more natural forms of intelligence we've been discussing
up to now: how adaptive behavior is produced in a changeable environ-
ment. In human terms, this would include things like how we recognize
a face in a crowd, how we coordinate our movements and manipulate all
the objects necessary to make cup of tea, or even Somet}n’ng as appar-
ently simple as how we manage to walk, run, and even hop over uneven
ground without falling flat on our faces.

You should now begin to see the problem. Our metaphor of the brain
—and hence of cognitive processes—is one that was originally derived
from a heavily anthropocentric focus on a few peculiar human cogni-
tive achievements, all of which involved abstract symbol manipulation. As
we’ve now seen, this in itself was derived from a misreading of Turing’s
work on computable numbers: work that made no claims of generality
as far as psychology and cognition were concerned, but dealt only with a
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very specific human activity (so one cannot accuse Turing of misplaced
anthropocentrism; he was quite clear about the aim of his work). As
Wells shows, when properly understood, the Turing machine model can
be seen as a critique of current cognitive approaches, one that supports
the underlying philosophy of ecological psychology® (and, as we shall
see later, the ideas of “embodied” and “distributed” cognition). Although
it is true that certain aspects of our cognition can be understood and
analyzed as computational processes involving the manipulation of sym-
bolic representations—or, as some would suggest, are best understood
via this kind of analogy—you should now appreciate that this isn’t quite
the whole story: not for us, and certainly not for other, nonlinguistic
species,

As we've noted in our consideration of both Gibson’s and Turing’s
work, the missing ingredient in all this is the recognition that the body and
the environment really do matter as far as cognition goes. After all, when
brains evolved initially, they did so in animals that already possessed bod-
ies, and long before they possessed anything that we would recognize as a
brain,* By failing to account for this (and indeed by completely misinter-
preting the nature of a Turing machine itself) the computer metaphor has
generated a view of cognition as a process that has no real link to the body
or the outside world, taking place purely in the brain alone.

What is worse is that we have taken this strange view of cognition—
that it takes place inside the “Turing machine” of the brain and involves
the disembodied, logical manipulation of internal representations—and
applied it directly to other animals, The metaphor of the computer and
the idea of a computational, representational mind is one that pervades
studies of comparative cognition® (even those articles that are critical
of the more anthropocentric/ anthropomorphic interpretations of such
studies nevertheless take the existence of von Neumann—like computa-
tional, representational processes to be axiomatic, rather than an assump-
tion to be tested).” What is also interesting is that we have applied the
computational model to other animals even though it doesn’t adequately
explain most facets of our own natural cognition (leaving aside the fact
that this kind of psychological generality was never the intention of the
earliest proponents of this model in the first place).””

By presenting an essentially disembodied view of cognition, the com-
puter metaphor, with its input-output (stimulus-response) structure, also
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suggests a very static picture of animal life. Like the computer on your
desk, an animal just has to sit there until a stimulus (an input) comes along
and causes it to act, As we have seen, the vast majority of animals are not
passive in this sense: they seck out relevant and significant resources in
the world, in an active, animate fashion. This again is a consequence of
their possessing a body and not only a brain (and of possessing bodies
before brains). To ignore the body and the environment when consider.
ing how animals behave in an “intelligent” fashion is, at the very least, to
miss out on half the story. Indeed, we’ve already seen how the ears of the
cricket and the eyes of the Portia spiders are highly relevant factors to
consider when we are trying to understand the behavior of these animals
in their natural environments. As we’ll discover more fully in the follow-
ing chapters, we are likely to gain a better understanding of the natural
kinds of intelligence that we see every day (and engage in ourselyes) only
when we take the body as seriously as we do the brain.

Returning to the Age of Steam

Steam is no stronger now than it was a hundred years ago,
but it is put to better use.
—-Ralph Waldo Emerson

Given these problems with the “brain as computer analogy,” how, then,
should we think about cognitive processes? One solution, as we’ve seen,
is the “ecological” computational approach suggested by Andrew Wells.
We can also, however, consider other kinds of models besides these
computer-based metaphors. Or, as Tim van Gelder, a philosopher at
Melbourne University in Australia puts it, “What might cognition be,
if not computation?”®® His suggestion follows on from that of the eco-
logical psychologists, to some degree, by recognizing the dynamic way
an animal’s sensory systems interact with its motor systems and how
these interact with the world. As the nervous system, body, and environ-
ment are simultaneously changing and influencing each other in a con-
tinual cycle of adjustment (they are “dynamically coupled”), we should
properly consider a “cognitive system” to be a single, unified system that
encompasses all three elements and doesn’t privilege the brain alone
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(especially a disembodied and autonomous one, translating abstract
input relations into similarly abstract output relations).* Interestingly,
this notion of dynamic coupling, where each change in one element of a
system continually influences every other element’s direction of change,
can be captured in another machine-based analogy. As van Gelder sug-
gests, a better model for how cognition works may be not a modern
digital computer, but something like a Watt governor.

A Watt governor, also known as a flyball or centrifugal governor,
is a device used to regulate the speed of a steam engine, regardless of
changes in the workload of the engine or the fuel supply. It was named
after James Watt, who designed some for use on the first steam engines
(although it should be noted that Watt himself didn’t invent the gover-
nor: governors of a similar design had already been in use in windmills
for many years). The governor consists of two flyballs (hence the name)
connected to a spindle by two flyball arms. The spindle is attached di-
rectly to the shaft of the steam engine. If the speed of the spindle in-
creases, the flyball arms move upward owing to centrifugal force. The
clever bit comes in here: the flyball arms are connected to a throttle
valve that regulates the amount of steam that enters the engine. When
the engine speeds up, the upward motion of the flyball arms closes the
throttle valve, thereby reducing the steam input to the engine and slow-
ing it down, Of course, as the speed of the engine falls, so, too, does the
spindle, which means that the flyball arms drop. This has the effect of
opening up the throttle valve, which allows more steam into the engine,
which then speeds up.

As a consequence of this constant adjustment of the spindle, flyball
arms, and throttle valve, the engine maintains a constant speed through
smooth and swift adjustment, despite fluctuations in the steam pressure
and workload. It should be apparent that, despite the way I've described
it above, it is very difficult to identify a discrete sequence of events in
a flyball governor because everything is happening continuously and
smoothly, all at the same time: the angle of the flyball arm determines
the speed of the engine, but, of course, it is the speed of the engine that
determines the angle of the flyball arms: the angle of the flyball arms and
engine speed are both determining, and determined by, each other. The
Watt governor therefore solves the problem of constant engine speed in
an entirely noncomputational, nonrepresentational way.
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Figure 7.2. A Watt governor for a steam engine. The flyball arms are connected
to a throttle valve that controls the amount of steam entering the engine and a
spindle that is connected to the drive shaft of the engine.

Of course, as van Gelder (1995) argues, one could, in principle, come
up with a computational, representational governor that would do much
the same job. Van Gelder himself produced an example of just such a
computational algorithm:

1. Measure the speed of the engine.
2. Compare this speed against the desired speed.
3. If no discrepancy was detected, then return to step 1. Other-
wise:
a. Measure current steam pressure.
b. Calculate desired alteration in steam pressure,
c. Calculate necessary throttle valve adjustment.
4. Make throttle valve adjustment.
5. Return to step 1.

What we need to remember here, however, is that this computational
solution, while fine in principle, isn’t the one that actually solved the
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problem of controlling engine speed, at least partly because the technol-
ogy needed to implement such a computational approach wasn’t avail -
able at the time. However, it is also noteworthy that the governor that
was invented did its job superbly well. It wasn’t just an inferior and
primitive fix, the best that could be done in the absence of computer
technology. It is also true that the computational solution is a Jot more
complicated in terms of the parts needed and operations performed.
There have to be devices that can measure the relevant parameters, as
well as devices to implement the response needed, A computational gov-
ernor is therefore likely to be more expensive to build and run than
the Watt governor, and there are more parts that can go wrong, This is
relevant from our evolutionary perspective, since evolution is a thrifty
process and tends toward the cheapest possible route to solve a prob-
lem effectively. A computational solution is not the only possible way to
solve the problem of variable engine speed, as the Watt governor dem-
onstrates, and we should take this lesson to heart: just because one can
very easily come up with computational solutions to problems, includ-
ing those of animal cognition, we should not be misled into thinking
these are the only solutions possible; other, potentially cheaper, equally
effective, solutions may be there for the asking. The noncomputational
solution to the problem of engine speed is in no way inferior to the com-
putational one; it is merely different, but it does the job as well, if not
better, and at a lower cost,

Still, even if we agree that the Watt governor is just fine, and there is no
necessity to replace it with a fully computational algorithmic device, one
could still make a case that the Watt governor itself is, in fact, using rep-
resentations and is, therefore, a computational device. One could argue
that the angle of the flyball arms does, in fact, “represent” the speed of the
engine because the angle of the flyball arms is correlated to engine speed.
One could, in principle, use this angle to stand in for how fast the engine
is running,** This does, however, miss a very important point about how
the governor does its job: although there is indeed a correlation between
angle arm and engine speed, the angle of the arms is at all times determin-
ing the amount of steam that can enter the engine, and hence at all times
the speed of the engine depends on the arm angle, just as much as arm
angle depends on engine speed. To argue that one “represents” the other
is massively oversimplistic, and it also fails to capture the fact that the
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system is dynamic and in a constant state of flux, Consequently, if the gov-
ernor is not strictly representational, then it can’t be computational (if we
stick with the definition that computation involves the rule-determined
manipulation of representations). Without representations, and because
of the mutually determining nature of cach element in the governor, one
cannot identify any discrete algorithmic steps in the operation of the gov-
ernor, and there is a sense in which the system simply cannot be con-
sidered computational (but we will revisit this below in slightly different
terms). The cut-out-and-keep message here, then, is that cognition need
not be—either by definition or by logical inference—a purely computa-
tional process. It also suggests strongly that flexible, intelligent systems
need not be separated into “hardware” and “software” components (the
sticky “wetware” of the brain and its, cognitive processes)—they are one
and the same. In other words, although the computer metaphor has been,
and perhaps still is, useful in helping to predict and explain certain aspects
of (human) psychology, we shouldn’t make the mistake of thinking that
this means that natural cognition really is computational and therefore that
the brain really is some kind of biological computer.

Timing Is (Almost) Everything

Observe due measure, for right timing is in all things the
most important factor.
—Hesiod

Of course, cognitive systems are no more like Watt governors than a
brain is like a computer—mnot literally. As we’ve noted, both are merely
metaphors. The computer metaphor has, however, been taken both very
literally and very seriously, and has promoted a very particular view of
cognition that has been widely and wholeheartedly adopted by many re-
searchers.” Looking to the Watt governor as an alternative metaphor is
useful not because there is any suggestion that cognitive systems actu-
ally work in this way, but because cognitive systems may be better un-
derstood as “dynamical systems” where inputs, internal processes, and
outputs—or, to put it more concrete terms, the environment, the brain,
and the body’s actions—are coupled like the spindle, angle arm, and
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throttle valve of the governor, Dynamical systems present us with more
useful means for understanding and thinking about physically embodied,
environmentally embedded organisms than do standard computational
models.

I want to expand on this point a little further because, as our discus-
sion of Turing machines above makes clear, if we define a dynamical sys-
tem as one that shows state-dependent change (i.e., the future state of the
system depends causally on the current state of the system), then compu-
tational systems are, by definition, dynamical systems.* In a Turing ma-
chine, the future state of the tape depends causally on the current state of
the head and what is currently written on the tape, and this represents the
coupling of the mini-mind with the tape environment. Looked at in this
way, computational systems can be seen as a specific subset of the kind of
dynamical systems that includes the Watt governor.* This inclusive defi-
nition means we can account for all cognitive processes using a dynami-
cal systems approach (potentially anyway—we are actually nowhere near
doing so), without being forced into a situation where we’re trying to
explain how two very different sorts of processes—computatlonal and
dynamical—came into being, and how they fit together.

So far, so good. But if computational systems are dynamical systems,
what, then, is the real difference between these kinds of systems and a
Watt governor? Michael Wheeler identifies at least two factors that seem
to be key in differentiating between them.* First, computational Sys-
tems, by definition, involve the use of representations: to do their job
they must access, manipulate, and transform symbols. As we noted above,
if one felt really strongly about it, one could make a case for a represen-
tational version of a Watt governor, but we also showed that representa-
tions were not essential to get the job done (that was the whole point of
the example). So that’s the first difference: a computational dynamical
system absolutely requires representations, whereas a noncomputational
dynamical system does not.

The second difference is more important, and, much like good com-
edy, it’s about timing, In a computational system, time is reduced to the
mere sequencing of events; in a Turing machine, things have to happen
in the right order, but the time it takes for transitions between states to
occur is not dealt with at all, and there is no specific theoretical reason
why things should happen in a specified amount of time. Similarly, the
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amount of time the machine should remain in a given state is not con-
sidered, because, in a Turing machine, this would serve no specific func-
tion. Time simply doesn’t matter. Of course, in the real world, one could
argue that computational events have to occur swiftly enough to enable
the problem to be solved in good time, but outside of that, time has no
role to play.

As we saw in the Watt governor example, this isn’t true of noncom-
putational dynamical systems. Instead, they exhibit “richly temporal
phenomena.” This means simply that the actual rates and rhythms that
characterize a particular process play an important and central role in
getting the job done. This could be the way that the underlying physical
processes of the brain work (how long it takes for a neurotransmitter, like
nitric oxide or glutamate, to diffuse through the brain, for example, or
how long it takes for such neurotransmitters to modulate neuronal activ-
ity), which in turn could affect the specific durations or rates of change in
other physiological processes. Similar intrinsic rhythms in the body may
also be important, as will other aspects of bodily dynamics that relate to,
for example, the mechanical properties of muscle, which dictate where
and how fast an animal can move. These bodily processes may, in turn,
need to be synchronized precisely with temporal processes occurring
outside of the animal in the enviromment.

This issue of timing is very clear in our Watt governor example,
where the coupling of the different parts, and the specific rhythm and
timing they displayed, were crucial to its success in controlling engine
speed. Interestingly, when more sophisticated governors were devel-
oped, they showed behavior that was much less effective than that of the
earlier models (which is rather counterintuitive): the new “improved”
models “hunted” for a steady speed, continually speeding up and slow-
ing down, rather than smoothly maintaining a steady state. This was
because superior manufacture of the component parts meant that they
generated less friction, and this, in turn, meant that speed adjustments
were effected much more quickly. Greater friction in the older models
meant that any changes in engine speed took longer to feed though the
system, and this intrinsic quality helped the governor to perform the
job at hand more effectively. Of course, friction and heat are features
of computational systems as well (this is why your computer has a fan
built into it), but the point is that, in a computational system, these are
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merely problems to be overcome by engineers, not an integral part of
the computational process.

Thinking in terms of dynamical systems with a “rich temporality” also
provides us with a new way of viewing the “failure” of evolved knowledge
in the face of environmental change. Returning to our digger wasps, we
can see their routine—preparing a chamber, inserting a bee into it, and
laying their eggs—as a dynamical interaction of the wasp’s internal state
(of readiness for egg laying), its actions in the world (hunting and cham-
ber preparation), and its environment (the presence of the chamber, the
proximity of the bee to the entrance). The “failure” of the wasp to begin
its “routine” in the middle is a failure only if we assume there is an under-
lying algorithm being followed. If, instead, we consider that the wasp’s
brain and body are making continual adjustments to an environment that
is continually being changed by the presence of the wasp (and so chang-
ing the wasp's state at the same time as the wasp changes the state of the
environment), we’re less inclined to see a failure and more aware of the
fact that we’re watching a dynamically coupled system in action.

One must be somewhat cautious in adopting a more dynamical ap-
proach, however. In particular, the philosopher of cognitive science Andy
Clark has noted that, because dynamical systems approaches are con-
cerned with the state of a system as a whole—so-called total state expla-
nations—we can potentially lose as much as we gain from adopting this
approach over the computational approach. Clark’s argument is that a
dynamical approach obscures the “intelligence-based” route to evolution-
ary success that characterizes living cognitive systems, as compared to the
other kinds of physical dynamical systems that exist in the world, such as
river flow systems.*

As we noted in chapter 5, brains evolved in order to allow animals
greater control over their environments and their destinies. Although we
have spent a lot of time in this chapter putting the brain in its place, it
would be foolish to suggest that brains don’t matter. Brains are crucial as
a location of behaviorally relevant activity, and this, as Clark notes, must
mean that brain-invelving dynamical systems are very different from
other kinds of dynamic physical systems.*” Brain-based systems achieve
the kinds of behavioral flexibility that we’re interested in precisely be-
cause the brain is able to alter the “information flow” through the system
cheaply and in a wide variety of ways. If we deal only with the overall
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state of the cognitive system, then those aspects of how information flow
is specifically channeled and directed by the brain get lost. If, however, we
are mindful of this possibility, and we consider the inner flow of informa-
tion within the brain as seriously as we do the overall state of the system,
we can generate what Clark calls a “powerful and interesting hybrid: a
kind of dynamical computationalism.” By this, he means we could com-
bine the “standard” computational and information-processing concepts
with the coupling and richly temporal phenomena of truly dynamical
systems.

His suggestion is that, rather than treating computational systems as
fundamentally different from noncomputational ones as described above,
we should atternpt to combine the two so that the conventional computa-
tional approach is given a new dynamical dimension. His argument, then,
is to take Wheeler’s idea of computational systems as a specific subset of
dynamical systems but to try to erode the distinction between them by
allowing richly temporal phenomena to transform the standard computa-
tional approach. This may well be a productive way forward: as the com-
plexity of sensory, motor, and physiological systems increases, and more
complex behavior is possible, then, as we mentioned earlier, one would
predict that the brain would have to be more strongly involved in altering
information flow through the brain-body system in order to provide the
kinds of temporal coordination needed to permit temporally rich adap-
tive behavior to emerge.

With this caveat in place, a dynamical systems approach, with its
emphasis on rates, rhythms, and synchrony, is preferable because it is
one that, by definition, naturally gives body and world their due when
it comes to cognitive processes because, as Wheeler makes clear, these
nonneural components will also act as pacemakers and rhythm-setters
in causally important ways, in conjunction with those taking place in the
brain.*® Even better, perhaps, a dynamical systems approach treats the
brain as an integral part of the body, and not as the all-powerful highly
privileged computer that “tells” the body what to do. Like nonneural
bodily processes, the neural activity of the brain has its own intrinsic
rhythms and undergoes change at different rates. These, in turn, must
be synchronized with the events that are happening in the body and
the environment to produce effective behavior. The standard computa-
tional model, which keeps perception, action, and cognition as separate,
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independent processes, and (implicitly) assumes these need occur only
in sequence, but not in real time, is both fundamentally “disembodied”
(because cognition does not depend on any aspect of an animal’s intrin-
sic physicality) and “disembedded” (because the environment plays no
intrinsic role in helping to regulate the cognitive system, but is merely
the “stage” on which the products of a disembodied cognitive process
are played out). We want a richly rhythmic time-dependent view that
accords with the lives of real, richly rhythmic time-dependent animals,
and so we shall continue to pursue a dynamical approach in the next
chapter. J

o CHAPTER 8

There Is No Such Thing as a
Naked Brain

You’ve got the brain of a four-year-old boy, and I bet he was glad to
be rid of it.

—Groucho Marx

We can discover more about the dynamical approach to animal
cognition and behavior by moving away from the more abstract
systems of the last chapter, and taking a look at real brains, and the ways
in which they aré coupled to the environment. Walter Freeman, a neuro-
physiologist at Berkeley, has spent the last thirty or so years performing
intricate and meticulous experiments on smell, vision, touch, and hear-
ing in rabbits (mainly) and has worked out a model of learning based on
the kind of dynamic coupling between brain and environment suggested
by the dynamic systems approach.' Before we can go into detail about
Freeman’s work, however, we first need to cover a little more ground
on the theory behind dynamical systems, so that we can more fully ap-
preciate Freeman’s views on how brains, bodies, and the environment fit
together.

Mathematically speaking, a dynamical system consists of a number of
“state variables” (e.g , the engine speed and flyball arm angle in the Watt
governor) that specify the state of the system at a given time, along with
a set of equations that describe how those variables change over time.
There can also be certain values that specify quantities that can change the
state of the system, but aren’t themselves changed as a result: these are
called the parameters of the system. Putting everything in these terms
allows us to think of a dynamical system as a form of graph-—a multi-
dimensional “phase space”—where the number of dimensions is set by
the number of state variables of the system. In such a phase space, each
possible state of the system (all the possible combinations of all the state
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